
Tour of Hell

Haskell dialect scripting language in 1k lines

Why

New Year’s Resolution

Write more shell scripts!

Bash downsides

Bash, zsh, fish, etc. have the same problems:

1. Incomprehensible gobbledegook.

2. They use quotation: x=$(ls -1)
a. Leads to bugs too easily

3. Leaning too heavily on processes to do basic things
a. Arithmetic, equality, ordering, etc. are completely unprincipled

Bash upsides

● Stable

● Simple

● Works the same on every machine

● Stable!

Defining shell scripts

Anatomy of a Shell scripting language

● Very basic; glue code

● Interpreted – run immediately, no (visible) compilation steps

● No apparent module system

● No apparent package system

● No abstraction capabilities (classes, data types, polymorphic functions, etc.)

Package and module systems are generally not
stable
This might be why bash is so reliable, and Node, Python, Haskell are not!

The Scripting Threshold

● When you reach for a module system or a package system, or abstraction capabilities.

● When you want more than what’s in the standard library.

… you probably want a general purpose programming language.

Solution

Why Haskell dialect?

● I know Haskell. It’s my go-to.

● It has a good story about equality, ordering, etc.

● It has a good runtime capable of trivially doing concurrency.

● Garbage collected, no funny business.

● Distinguishes bytes and text properly.

● Can be compiled to a static Linux x86 binary.

● Performs well.

● Types!

Decisions

● Use a faithful Haskell syntax parser (HSE).
○ It’s better.

● No imports/modules/packages.
○ That’s code reuse and leads to madness.

● No recursion (simpler to implement).
● Type-classes (Eq, Ord, Show, Monad).

○ Needed for e.g. List.lookup and familiar equality things.
● No polytypes.

○ That’s a kind of abstraction.
● Use all the same names for things (List.lookup, Monad.forM, Async.race, etc.)

○ Re-use intuitions.

Short version: it works

Example

Long version: Compiler pipeline

Parser

Use haskell-src-exts package.

But then what?

Desugaring…

Detour: Basic eval in Haskell

Total, well-typed eval in Haskell (HOAS)

This implementation is well-typed,

and doesn’t crash.

Detour: Oleg Kiselyov’s eval
(From Typed Tagless Final Interpreters)

Type-indexed eval

Doesn’t crash. The variables are
statically indexed.

Hell’s eval

Detour: Stephanie Weirich’s type
checker

https://gist.github.com/chrisdone-artificial/5292b24e409c89f0f4491af83ef65336
https://gist.github.com/chrisdone-artificial/5292b24e409c89f0f4491af83ef65336

tc :: UTerm -> exists ty. (Ty ty, Term ty)

A type checker with this type.

(Wrap it in an Either to avoid `error` calls, but minor detail.)

Untyped terms Typed terms

Typecheck a type

Typecheck an if

(No error checking, imagine a _ -> error “Nooo!” branch)

Variables in scope

Applications, easy

Type checker, review

Evaluating Term

Easy – use Oleg’s type-indexed eval.

Detour: Eitan Chatav’s type-class
support

https://gist.github.com/chrisdone-artificial/8d807f6f26f08363a860330223591e70
https://gist.github.com/chrisdone-artificial/8d807f6f26f08363a860330223591e70

Preamble

Type-class instance resolving

Type.Reflection

Reminder: typed AST

Type.Reflection

Type application

Hell’s untyped AST

Desugarer type

New type checker signature

But otherwise
basically the
same.

For type inference

(missing constructor here)

Type inference

Inference type

Top-level: normal stuff

Elaboration
Pretty normal stuff here, too.

Easy ones

Unification
Normal stuff, nothing interesting here at all.

Same as typing haskell in haskell.

Polymorphic primitives

Forall

Example

id = NoClass (\(TypeRep :: TypeRep a) -> Final (lit (id :: a -> a)))

Type-checking Foralls
Yes this actually works.

Inferring foralls

Primops

Poly: Template Haskell

id =

 NoClass (\(TypeRep :: TypeRep a) ->

 Final (lit (id :: a -> a)))

Supported types

No need to explicitly mention all

The details of the types.

Desugarer points

do-notation

Frontend

Main runner

FIN

